### Causal Inference from Observational Data

Shalmali Joshi Vector Institute

#### **Motivational Questions**

•Find which medication A/B is best for diabetics?

•Should I deploy this new feature in company's product?

•Would this person be rejected for the job had their name been different?

#### Bring in the Machine Learning Hammer

- Supervised Classification only learns "associations" p(y|x)
- X = [lab\_tests, diagnoses, medications]
- y = [severely\_diabetic]
- Mostly just correlations

## But then many things are correlated



Thanks to

Lan Liu,

U.

Do we really want to learn p(death by drowning| # ice-creams)?

Minnesota

Questions:

- 1. Does eating ice-cream cause death by drowning?
- 2. Is something else causing both these phenomena
- 3. Could we realistically have some randomly chosen humans eat lots of ice-cream and see if what happens?
- 4. In a healthcare setting, one cannot risk death because of the treatment!



Confounding!

#### Randomized controlled trial (RCT)



# More Common: Observational Setting



#### treatment

A or B

### **Clinical setting**

•RCTs are also known as "clinical trials"

- Tens of thousands every year, costing tens of billions of dollars
- Every new medication must pass several stages of RCTs before approval for human use

#### •Observational study

- Use existing data, tracking people's medications and blood sugar
- Problem: the space of possible confounders

### Supervised learning isn't enough

- •This is not a classic supervised learning problem
- •Our model was optimized to predict outcome, not to differentiate the influence of **A** vs. **B**
- •What if our high-dimensional model threw away the feature of medication *A*/*B*?
- Hidden confounding:

Maybe using **B** is *worse* than **A**, but rich patients usually take **B** and richer people also have better health outcomes.

If we don't know whether a patient is rich or not, we might conclude **B** is better

## Causal Hierarchy (not captured by mere associations)

Observational Questions: "What if we see A"

Action Questions: "What if we do A?"

Counterfactuals Questions: "What if we did things differently?"

Options: "With what probability?"

# Two foundational ways to think of Causality

- Potential Outcomes (Rubin, Neyman)
- Causal Graphical Models (Judea Pearl)
- Either framework needs manipulating reality

#### **Potential Outcomes**

- Unit: a person, a bacteria, a company, a school, a website, a family, a piece of metal, ...
- Treatments / actions / interventions (A/B)
- Potential outcomes

Y1 : the unit's outcome had they been subjected to treatment t=1

Y0 : the unit's outcome had they been subjected to treatment t=0. If number of treatments is T, we have T potential outcomes (T possibly infinite)

In observations, a single unit gets one of the T treatments

## Inferring under this framework requires assumptions

- SUTVA: Stable Unit Treatment Value Assumption
- The potential outcomes for any unit do not vary with the treatments assigned to other units
- failure example: vaccination, network effects
- For each unit, there are no different forms or versions of each treatment level, which lead to different potential outcomes
- failure example: some people get out-of-date medication
- Consistency:  $p(Y_t=y|X=x, T=t) = p(Y=y|X=x, T=t)$

#### **Potential Outcomes Formalized**

- •• Sample of units i = 1, ..., n
  - Each has potential outcomes  $(Y_0^1, Y_1^1), \dots, (Y_0^n, Y_1^n)$
  - Individual Treatment Effect for unit *i*:

$$ITE_i \equiv Y_1^i - Y_0^i$$

Average Treatment Effect over the sample.

$$ATE_{finite} \equiv \frac{1}{n} \sum_{i=1}^{n} Y_1^i - Y_0^i$$

- Usually: assume some joint distribution  $p(Y_0, Y_1)$  $ATE \equiv \mathbb{E}[Y_1 - Y_0]$
- Define average over which population ("diabetics living in Israel over age 65")

#### Example: Blood Pressure and Age

y = blood\_pres.





x = age

#### **Example: Blood Pressure and Age**



#### **Estimation Example**

| Gender | Treatment | Y <sub>0</sub> : Sugar levels Y <sub>1</sub> : Sugar levels |             | Y:                    |
|--------|-----------|-------------------------------------------------------------|-------------|-----------------------|
|        |           | had they had they                                           |             | Observed sugar levels |
|        |           | received                                                    | received    |                       |
|        |           | treatment 0                                                 | treatment 1 |                       |
|        |           |                                                             |             |                       |
|        |           |                                                             |             |                       |
|        |           |                                                             |             |                       |
|        |           |                                                             |             |                       |
| M      | 0         | 8                                                           | 10          | 8                     |
| M      | 0         | 8                                                           | 10          | 8                     |
|        |           |                                                             | 10          |                       |
| M      | 0         | 8                                                           | 10          | 8                     |
| M      | 1         | 8                                                           | 10          | 10                    |
|        |           |                                                             |             | <u> </u>              |
|        | 0         | 4                                                           | 6           | 4                     |
| F      | 1         | 4                                                           | 6           | 6                     |
|        |           |                                                             |             | · ·                   |
| F      | 1         | 4                                                           | 6           | 6                     |
| F      | 1         | 4                                                           | 6           | 6                     |
|        |           |                                                             |             |                       |

### Estimation

• True treatment effect:  $\mathbb{E}[Y_1 - Y_0] = 2$ 

$$\mathbb{E}[Y|t=1] - \mathbb{E}[Y|t=0] = \frac{1}{4}(10+6+6+6) + \frac{1}{4}(8+8+8+4) =$$

Gender Treatm Y<sub>0</sub>: Sugar Y<sub>1</sub>: Sugar Y: Observed sugar ent levels levels levels had they had they received received treatment treatment 0 1 8 Μ 0 10 8 8 Μ 0 10 8 8 10 8 0 Μ 10 8 10 Μ 1 F 0 6 4 4 F 1 4 6 6 F 4 6 6 1 F 6 4 6 1

7 - 7 = 0

#### Within each group we get the true treatment effect!

#### Estimation

• True treatment effect:  $\mathbb{E}[Y_1 - Y_0] = 2$ 

 $\mathbb{E}[Y|t = 1] = 7$  $\mathbb{E}[Y|t = 0] = 7$ 

$$\mathbb{E}[Y|t = 0, Gender = M] = 8$$
  
$$\mathbb{E}[Y|t = 1, Gender = M] = 10$$

 $\mathbb{E}[Y|t = 0, Gender = F] = 4$  $\mathbb{E}[Y|t = 1, Gender = F] = 6$ 

|   | Gender | Treatm<br>ent | Y <sub>0</sub> : Sugar<br>levels<br><i>had they</i><br><i>received</i><br>treatment<br>0 | Y <sub>1</sub> : Sugar<br>levels<br><i>had they</i><br><i>received</i><br>treatment<br>1 | Y:<br>Observed sugar<br>levels |
|---|--------|---------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------|
|   | Μ      | 0             | 8                                                                                        | 10                                                                                       | 8                              |
|   | Μ      | 0             | 8                                                                                        | 10                                                                                       | 8                              |
|   | Μ      | 0             | 8                                                                                        | 10                                                                                       | 8                              |
|   | Μ      | 1             | 8                                                                                        | 10                                                                                       | 10                             |
|   | F      | 0             | 4                                                                                        | 6                                                                                        | 4                              |
|   | F      | 1             | 4                                                                                        | 6                                                                                        | 6                              |
| ' | F      | 1             | 4                                                                                        | 6                                                                                        | 6                              |
|   | F      | 1             | 4                                                                                        | 6                                                                                        | 6                              |

#### Treatment assignment mechanism

• G=0 if gender=F, G=1 if gender=M

 $Y_0 = 4+4*G$  $Y_1 = 4+4*G+2$ 

• p(t=1|G=1) = 0.25p(t=1|G=0) = 0.75

| Gender | Treatm<br>ent | Y <sub>0</sub> : Sugar<br>levels<br><i>had they</i><br><i>received</i><br>treatment<br>0 | Y <sub>1</sub> : Sugar<br>levels<br><i>had they</i><br><i>received</i><br>treatment<br>1 | Y:<br>Observed sugar<br>levels |
|--------|---------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------|
| Μ      | 0             | 8                                                                                        | 10                                                                                       | 8                              |
| Μ      | 0             | 8                                                                                        | 10                                                                                       | 8                              |
| Μ      | 0             | 8                                                                                        | 10                                                                                       | 8                              |
| Μ      | 1             | 8                                                                                        | 10                                                                                       | 10                             |
| F      | 0             | 4                                                                                        | 6                                                                                        | 4                              |
| F      | 1             | 4                                                                                        | 6                                                                                        | 6                              |
| F      | 1             | 4                                                                                        | 6                                                                                        | 6                              |
| F      | 1             | 4                                                                                        | 6                                                                                        | 6                              |

#### Random Treatment Assignments

They work because it allows to get expectations from observations!

- Treatment is random:  $(Y_0, Y_1) \perp T$
- $\mathbb{E}[Y_1] =$
- $\mathbb{E}[Y_1|T=1] =$
- $\mathbb{E}[Y_{obs}|T=1]$

- Treatment is random:  $(Y_0, Y_1) \perp T$
- $\mathbb{E}[Y_0] =$
- $\mathbb{E}[Y_0|T=0] =$
- $\mathbb{E}[Y_{obs}|T=0]$

$$ATE = \mathbb{E}[Y_1 - Y_0] = \\ \mathbb{E}[Y_1] - \mathbb{E}[Y_0] = \\ \mathbb{E}[Y_{obs}|T = 1] - \mathbb{E}[Y_{obs}|T = 0]$$

#### Treatment assignment not random!

| Gender | Treatment | Y <sub>0</sub> : Sugar levels<br>had they<br>received<br>treatment 0 | Y₁: Sugar levels<br>had they<br>received<br>treatment 1 | Y:<br>Observed sugar levels |  |
|--------|-----------|----------------------------------------------------------------------|---------------------------------------------------------|-----------------------------|--|
| M      | 0         | 8                                                                    | 10                                                      | 8                           |  |
| M      | 0         | 8                                                                    | 10                                                      | 8                           |  |
| м      | 0         | 8                                                                    | 10                                                      | 8                           |  |
| м      | 1         | 8                                                                    | 10                                                      | 10                          |  |
| F      | 0         | 4                                                                    | 6                                                       | 4                           |  |
| F      | 1         | 4                                                                    | 6                                                       | 6                           |  |
| F      | 1 4 6     |                                                                      | 6                                                       | 6                           |  |
| F      | F 1 4     |                                                                      | 6                                                       | 6                           |  |

$$P(Y_0 = 8 | T = 0) = 0.75$$
  

$$P(Y_0 = 8 | T = 1) = 0.25$$
  

$$P(Y_1 = 10 | T = 0) = 0.75$$
  

$$P(Y_1 = 10 | T = 1) = 0.25$$

 $(Y_0, Y_1)$  are not independent of T

| Gender | T:<br>Treatment | Y <sub>0</sub> : Sugar<br>levels<br>had they<br>received<br>treatmen<br>t 0 | Y <sub>1</sub> : Sugar<br>levels<br>had they<br>received<br>treatmen<br>t 1 | Y:<br>Observ<br>ed<br>sugar<br>levels |
|--------|-----------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------|
| м      | 0               | 8                                                                           | 10                                                                          | 8                                     |
| м      | 0               | 8                                                                           | 10                                                                          | 8                                     |
| M      | 0               | 8                                                                           | 10                                                                          | 8                                     |
| м      | 1               | 8                                                                           | 10                                                                          | 10                                    |
| F      | 0               | 4                                                                           | 6                                                                           | 4                                     |
| F      | 1               | 4                                                                           | 6                                                                           | 6                                     |
| F      | 1               | 4                                                                           | 6                                                                           | 6                                     |
| F      | 1               | 4                                                                           | 6                                                                           | 6                                     |

$$P(Y_0 = 4 | T = 0, G = F) = 1$$
  

$$P(Y_0 = 4 | T = 1, G = F) = 1$$
  

$$P(Y_1 = 6 | T = 0, G = F) = 1$$
  

$$P(Y_1 = 6 | T = 1, G = F) = 1$$

(Y<sub>0</sub>, Y<sub>1</sub>) **are independent** of T **conditioned** on G=M, and conditioned on G=F

ed had they had they sugar received received levels treatmen treatmen t 0 t1 Μ 0 8 10 8 8 0 10 8 Μ 8 8 Μ 0 10 8 10 10 Μ 1 F 0 4 6 4 F 1 4 6 6 F 1 4 6 6 F 4 6 6

Y<sub>0</sub>: Sugar

levels

Y<sub>1</sub>: Sugar

levels

Y:

Observ

Gender

T:

Treatment

No Unmeasured Confounding! Or Ignorability

$$(Y_0, Y_1) \perp T | G$$

#### Common support assumption

- Y<sub>0</sub>, Y<sub>1</sub>: potential outcomes for control and treated x: unit covariates (features)
  - T: treatment assignment

We assume:

$$p(T = t | X = x) > 0 \forall t, x$$

#### **Propensity Score**

When is estimating treatment effect harder? Observational study

Treatment assignment non-random→ counterfactual and x<sub>2</sub> factual have different distributions





#### Propensity score

- Extremely widely used tool
- Basic idea: turn observational study into a pseudorandomized trial by correcting for non-random sampling

Ignorability

- $(Y_0, Y_1) \perp T \mid x$
- What functions of f(x) will still allow  $(Y_0, Y_1) \perp T \mid f(x)$ ?
- Theorem:

Let e(x) = p(T = 1|x), also called the **propensity score**. If ignorability holds for x, then e(x) is the coarsest function of x for which ignorability still holds

### **Propensity Score**

- e(x) = p(T = 1|x), the treatment assignment mechanism
  - In most cases must be estimated from data
  - Can use any machine learning method: logistic regression, random forests, neural nets
  - Unlike most ML applications, we need to get the probability itself accurately
  - Subtle point: if we include x which are only predictive of treatment assignment but not outcome
  - Hard (but not impossible) to validate models

### Propensity Score - Algorithm for ATE estimation

- How to calculate ATE with propensity score for sample  $(x_1, t_1, y_1), ..., (x_n, t_n, y_n)$ 
  - 1. Use any ML method to estimate  $\hat{p}(T = t | x)$

2. 
$$A\hat{T}E = \frac{1}{n} \sum_{i \text{ s.t. } t_i = 1} \frac{y_i}{\hat{p}(t_i = 1|x_i)} - \frac{1}{n} \sum_{i \text{ s.t. } t_i = 0} \frac{y_i}{\hat{p}(t_i = 0|x_i)}$$

Not Covered: Propensity Score Matching

#### Pearlean Causal Framework



#### Intervention

- Turn the sprinkler on, please
- We removed the association between season and sprinkler
- We are now in a new world, where the sprinkler is set to on
- This is the do-operator



#### Intervention (do-Calculus)





#### What is cause-effect here?

• *Effect of binary t on outcome y:* 

$$\bullet \ p(y|do(T=1)) - p(y|do(T=0)) \\$$

Sometimes we can't compute it



### The Assumptions: causal identifiability

- Back-door criterion (Pearl, 1993, 2009): The observed variables d-separate all paths between y and T that end with an arrow pointing to T
  - Tells us what can we measure that will ensure causal identifiability
  - There are other useful sufficient conditions, for example the "front-door criterion" (Pearl, 2009)

### The Assumptions: causal identifiability

Back-door criterion:

The observed variables d-separate all paths between y and T that end with an arrow pointing to T





### The Assumptions: causal identifiability

Back-door criterion:

The observed variables d-separate all paths between y and T that end with an arrow pointing to T





#### Unidentifiable Causal Effect



### Main Takeaways

- Supervised learning has limitations
- RCTs are expensive AND limited
- Ergo, think causally especially for clinical data
- Pearl's and Rubin's frameworks provide foundational formalism for causal effect estimation
- Not all effects are identifiable
- Most research questions cater to how to relax all the assumptions we made along the way!